Science 8 Unit A: Mix and Flow of Matter

1.0 Fluids are used in technological devices and everyday materials

Hazardous symbol

WHMIS

Symbol Shapes and Colours:

7 Pictures of chemical hazards

1.2 The Many uses of Fluids

Fluid:

Slurries:

Fluids Become Solids:

Fluids Can Hold Other Materials:

Useful Properties of Fluids:

2.1 Pure Substances and Mixtures

Pure substance:

Mixture:

Mechanical mixture:	
Heterogeneous mixture:	
Homogeneous mixture:	
 Solution:	
Suspension:	
Colloid:	
Paper Chromatography:	
2.2 Concentration and Solubility	
Solute:	

Solvent: HUT - 0.8CM RULED

Measuring Concentration Concentration:

Comparing concentrations: Dilute vs Concentrated

Unsaturated solutions:

Saturated solutions:

Solubility:

Saturation point

Comparing Solubility of common substances

2.3 Factors affecting Solubility

Solubility depends on at least three factors:

<u>Types of solutes and Solvents</u> Aqueous solution:

Solubility Changes with temperature

Thermal pollution

2.4 The Particle Model of Matter and the Behavior of mixtures

The Particle Model of Matter – four parts:

How the particle model explains mixing substances

Factors affecting the rate of dissolving - three parts

3.0 the properties of gases and liquids can be explained by the particle model of matter

3.1 Viscosity and the effect of temperature:

Viscosity with the ramp method

Understanding viscosity and temperature

<u>3.2 Density of Fluids</u> Density:

Understanding Density:

Calculating Density Using an Equation:

3.3 Densi	ty, Tem	perature.	and	Buoyancy

The particle Model as an explanation for density changes:

Different temperature, different density:

Changing Density by changing concentration:

Buoyancy:

Buoyant Force:

Plimsoll Line:

Hot air Balloon

<u>3.4 Compression of Fluids</u> Compressibility:

Differences in compressibility between gases and liquids:

Incompressible:

3.5 Pressure in Fluids – Pascal's Law Pressure:

Equation:

Pressure and Depth

The greater the depth, the greater the pressure:

Pascal's law:

Hydraulic Devices and Hydraulic Systems:

Pneumatic Devices and Pneumatic Systems:

Maintaining the Pressure - Leaks are Bad!

4.0 Many technologies are based on the properties of fluids4.1 <u>Technologies Based on Solubility</u>

Diving and Decompression

<u>4.2 Technologies Based on Flow Rates and moving Fluids</u> Pump:

The Bicycle pump:

Pipeline Pigs:

Valves:

4.3 Designing a Working Model of A fluid-using device Explain how a cartesian Diver Works:

How a submarine works

Diagram of a submarine

