Calculating Mechanical Advantage, Speed Ratio, Work, and Efficiency

Answer each of the questions below on a separate piece of paper and show all of your work. Remember to label each measurement (N for Newtons, J for Joules, etc.). Round all decimal numbers to the nearest tenth if necessary.

1. When riding a bicycle the rider puts 580 N of force on the pedals. The gears on the bicycle record a force of 64 N . What is the mechanical advantage of the bicycle?

Formula	Substitute	Answer (with units when appropriate)

2. The input force for a pulley system is 48 N . The output force is 320 N . Calculate the mechanical advantage.

Formula	Substitute	Answer (with units when appropriate)

3. A winch moves an anchor 32 meters when its chain is pulled 128 meters. Calculate the speed ratio.

Formula	Substitute	Answer (with units when appropriate)

4. A pulley system allows a load of 750 N to be lifted by a 50 N input force. What is the mechanical advantage of the pulley system?

Formula	Substitute	Answer (with units when appropriate)

5. Calculate the mechanical advantage, speed ratio, and efficiency for each set of measurements:

5a) Input force $=\mathbf{1 2 . 6} \mathbf{N} \quad$ Output Force $=\mathbf{2 4 N} \quad$ Input Distance $=\mathbf{3 m} \quad$ Output Distance $=1 \mathrm{~m}$

Mechanical Advantage Formula	Substitute	Answer (with units when appropriate)
Speed Ratio Formula	Substitute	Answer (with units when appropriate)
Efficiency Formula	Substitute	Answer (with units when appropriate)

5b) Input Force $=40 \mathrm{~N} \quad$ Output Force $=14 \mathrm{~N} \quad$ Input Distance $=\mathbf{0 . 8 m} \quad$ Output Distance $=1.6 \mathrm{~m}$

Mechanical Advantage Formula	Substitute	Answer (with units when appropriate)
Speed Ratio Formula	Substitute	Answer (with units when appropriate)
Efficiency Formula	Substitute	Answer (with units when appropriate)

5c) Input Force $=4.5 \mathrm{~N} \quad$ Output Force $=16 \mathrm{~N} \quad$ Input Distance $=15 \mathrm{~m} \quad$ Output Distance $=\mathbf{3 m}$

Mechanical Advantage Formula	Substitute	Answer (with units when appropriate)
Speed Ratio Formula	Substitute	Answer (with units when appropriate)
Efficiency Formula	Substitute	Answer (with units when appropriate)

5d) Input Force $=\mathbf{3 0 N} \quad$ Output Force $=\mathbf{6 N} \quad$ Input Distance $=\mathbf{6 m} \quad$ output distance $=\mathbf{2 m}$

Mechanical Advantage Formula	Substitute	Answer (with units when appropriate)
Speed Ratio Formula	Substitute	Answer (with units when appropriate)
Efficiency Formula	Substitute	Answer (with units when appropriate)

6. Which machine in question 5 was the most efficient? What does this mean in terms energy input and energy output of the machine?
7. A mechanical lift moves a wheelchair 6 m . The force exerted by the person and the wheelchair is 320 N . Calculate the work done by the lift.

Formula	Substitute	Answer (with units when appropriate)

8. A 54 N trunk is lifted 8 m . Calculate the work performed.

Formula	Substitute	Answer (with units when appropriate)

9. Calculate the work done when a 750 N table is pushed 1.2 m .

Formula	Substitute	Answer (with units when appropriate)

10. What is the work done by a 6 N skateboard boarding down a ramp of 286 m ?

Formula	Substitute	Answer (with units when appropriate)

11. A student does 440 J of work to move a box 17 m . What force is required to move the box?

Formula	Substitute	Answer (with units when appropriate)

