

THE EFFECTS OF SIMPLE MACHINES p268

1. Change the direction of a force
2. Multiply Force
3. Increase or Decrease Speed
4. Transfer Force

Notes bottom page 3

Please copy into notes under "Simple Machines" near the bottom of the front page.

There are six simple machines we learned about in class. Please match the simple machine with its picture.

CIR p 268: All Check And Reflect

1. Identify which simple machines you would use in each of the following situations: a) digging a deep hole
b) moving a heavy rock from one side of your yard to the other
a) Give examples of energy sources used for modern machines, such as cars and sewing machines.
b) Are the energy sources in question aa) the same as those used in machines before the 1900s? Explain your answer
2. When a simple machine increases the force you exert, what other factor changes?
3. One of the most important tools for pioneers in Canada was the axe. What two simple machines make up the axe?

Use the objects on this page to show each of the levels of levers.

Linkage
Part of a system that transfers energy. Ex. In a bike, the chain transfers energy from your legs to the back wheel Ex: The chain on a bicycle is a linkage.

Transmission
A special type of linkage for transferring energy from the
engine to the wheels in trucks and cars.

Gears
A pair of wheels with teeth that interlink: when they
rotate together one gearwheel transfers turning mot rotate together, one gearwheel transfers turning motion
and force to the other.

Please Draw these on the back of your note booklet

How Gears Work
An force is applied to the DRIVING GEAR.

The driving gear then transmits that force to the DRIVEN GEAR

Two or more gears meshed together make a GEAR TRAIN

Mechanical Advantage Practice

$$
M A=\text { Outut Fore }
$$

1. 2000 N of force is put on the input piston of a car crusher, resuling in 6 a crush the car. Find M.A.

Marina exerts 35 N of force on a screw driver handle. The head of the screw is turned by the screw diver with 70 N of force. Find
. The head of an axe exerts 500 N xe with 100 N of force. Find M.A.

The engine of a car exerts
B000 of force on the drive shaf
By the time the force reaches the
ires it has been multiplied by 3 .
ind the M.A. of the car's drive-
train
5. Calculate the Input Force the
ollowing machine: Mechanical
Advantage $=4$, Output Force $=36 \mathrm{~N}$

Mechanical Advantage Less Than One

$$
M A=\frac{\text { Output Force }}{\text { Input Force }}
$$

Think about the bicycle again. It has a mechanical advantage less than 1. For example, a cyclist may apply an input force of 650 N to the pedals. Through the bicycle's linkages, this results in an output force of 72 N . Recall the formula for calculating mechanical advantage: $\mathrm{MA}=$ Output force \div Input force $=72 \div 650=0.1$. The mechanical advantage of the bicycle is 0.1 .

MA less than one means the machine increases speed or distance by reducing force.

Speed Ratio Practice
Speed Ratio $=\frac{\text { Input distance }}{\text { Output distance }}$

1. The handles of a pair of pliers
are moved 6 cm , the other end
moves 3 cm . Find S.R.
2. The effort end of a class 1 lever
is moved 3 feet, while the load end
is moved 1 foot. Find S.R.
3. The rope of a pulley is pulled

8 feet for every 3 feet the load is
moved. Find S.R.
4. The input gear of a bike rotates 800 times for every 600
revolutions of the rear wheel. Find S.R.
5. Find Input Distance of a machine that has: Speed ratio of 0.25 and an Output Distance of 8 meters.

Eff $=\frac{\text { MA }}{\text { SR }} \times 100$

Work is done when a force acts on an object to
moke that object move
\qquad Calculating Work
Work can be calculated using the equation: $W=F \times D$. The amount
$\frac{0 f}{\text { of work done depends on: }}$ The amount of force ex

- The amount of force exerted on the obiect Thisance the object moved in the direction of the applied
$\frac{\text { force }}{\text { Formatas }}$
Wrow
WF
Pacein, atmonn

Work nuss always be measured in Newton-Meters, therefore distance
nust always be converted to meters. One Newton-meter is equal to
Example: You exer 320 N of force on a brick that moves
$W=F \times d$
$W=320 N \times 5 \mathrm{~m}$
$\omega=1600 \mathrm{~N} \cdot \mathrm{~m}$
$W=1600 \mathrm{~J}$

Wednesday Nov 24th

1. Ten minutes to finish C/R p 286 (See my example)
2. The Science of Work

What about the blue chair?
Bobby Knight accomplished plenty of work using

http://web.mac.com/bradgreve/Site/Audio_and_Video/Entries/2008/2/26_Ed_4765 _audio_assignment.html
http://www.youtube.com/watch?v=7Qxu5cvW-ds

Work Efficiency

Work Eff $=75 \%$

Your Assignment

Please complete the calculation work sheet
Questions should be answered in the following format:

STEP	EXAMPLE
1. Write the formula:	$M A=\frac{F_{\text {output }}}{F_{\text {Input }}}$
2. Substitute Values: (Include Units)	$M A=\frac{50 \mathrm{~N}}{10 \mathrm{~N}}$
3. Calculate Answer: (Include Units when applicable)	$M A=5$

Your Assignment

Use the formulas on the board to answer C/R p 292 \# 1-3, 6, 9

Hydraulic System: system that uses a liquid under pressure to move loads; device that uses liquids in a confined space to transfer forces. See Pascal's Law

The Hydraulics in this Caddy uses 4000 N of force on hydraulic pistons with an area of $0.5 \mathrm{~m}^{2}$ Calculate pressure

$$
P=\frac{F(N)}{A\left(m^{2}\right)}
$$

Hydraulic Example Question

A thin pipe full of water connects two pistons. The first piston has a surface area of $20 \mathrm{~cm}^{2}$. The second piston has a surface area of $40 \mathrm{~cm}^{2}$. A force of 300 N is applied to the first piston
a) How much pressure does the first piston create in the water pipe?
b) What is the output force on the second piston?
$\frac{F \text { input }}{A \text { input }}=\frac{\mathrm{F}_{\text {out }} \text { ? }}{A \text { output }}$

Mechanical Calculation Formulas

$\text { Mechanical Advantage }=\frac{\text { Output Force }(N)}{\text { Input Force }(N)}$	$M A=\frac{O F}{I F}$
$\text { Speed Ratio }=\frac{\text { Input distance }(m)}{\text { Output distance }(m)}$	$S R=\frac{I D}{O D}$
$\text { Efficiency }=\frac{\text { Mechanical Advantage }}{\text { Speed Ratio }} \times 100$	$E f f=\frac{M A}{S R} \times 100$
Work $=$ Force (N) \times Distance (m)	$W=F \times D$
$\text { Pressure }=\frac{\text { Force }(N)}{\text { Area }\left(m^{2}\right)}$	$P=\frac{F}{A}$
$\frac{\text { Force of input piston }}{\text { Area of small piston }}=\frac{\text { Force of output piston }}{\text { Area of output piston }}$	$\frac{F \text { input }}{A \text { input }}=\frac{F \text { output }}{A \text { output }}$

Evaluating Mechanical Devices

On a piece of paper, draw this chart and use information on page
$309-312$ to fill lit in. On the back list 5 Criteri for $309-312$ to fill it in. On the back, list 5 Criteria for Evaluation (found on page 312)

Which Design do you think is the best? Why?
Criteria For Evaluation

1. Efficient: Quickly and Easily (Uses energy Well)?
2. Effective: Does it do it's job?
3. Is it safe: (Design)?
4. Is it convenient (practical)(Function)?
5. Is it Environmentally Friendly?

Evaluating Mechanical Devices

Efficiency
How well a machine uses energy (higher efficiency = less waste
Effectiveness
Does the mechanical device do what it was designed to?
Environmentally Friendly
Does the machine contribute to light, air, noise, or physical pollution?
Design
What is the physical form (shape) of the device that makes it useful?
Function
What is the machine supposed to do, what tasks does it perform?

Evaluating Mechanical Devices

Efficiency
How well a machine uses energy (higher efficiency = less waste
Effectiveness
Does the mechanical device do what it was designed to?
Environmentally Friendly
Does the machine contribute to light, air, noise, or physical pollution?
Design
What is the physical form (shape) of the device that makes it useful?
Whatids the machine supposed to do, what tasks does it perform?

CoLA	Evaluating Mechanical Devices		
Opener Design	Advantag es	Disadvantage s	Changes
Church Key			
Removable Tab Top			
Buttons			
Non- Removable Tab Top			

Unit D Calculation Review

1. You put 10 newtons of force on the handle of a can crusher. The crusher outputs 40 N of pressure on the can. What is the mechanical advantage?
2. The can crusher requires an input distance of 4 m to move 0.5 m . Find the Speed Ratio
3. Calculate the efficiency of the can crusher
4. 80 N of force is required to move the can crusher 4
meters Calculate the Work done on the crusher.
5. A force of 350 N is applied to the input piston of
this a ram. The piston has an area of $.15 \mathrm{~m}^{2}$. How much pressure created?
6. A thin pipe full of water connects two pistons. The first piston has a surface area of $20 \mathrm{~cm}^{2}$. The second piston has a surface area of $15 \mathrm{~cm}^{2}$. A force of 300 N is applied to the first piston

Speed Ratio

A measure of how the speed of an object is affected by a machine

Formula

Speed Ratio $=\frac{\text { Input distance }}{\text { Output distance }}$

- or -
$S R=\frac{d_{\text {input }}}{d_{\text {output }}}$ where d is distance

Decreasing Speed

If a pulley has a speed ratio of 3 , it mean the rope is being pulled 3 times faster than the speed of the load moving

The Meaning of Work
Work is done when a force acts on an object to
make that object move.
make that object move.
Calculating Work
$\frac{\text { Work can be calculated using the equation: W}=F \times D \text {. The amount }}{\text { of work done depends on: }}$
of work done depends on:
The amount of force exerted on the obiect

- The distance the object moved in the direction of the applied
${ }_{\text {force }}$ fola:
$\mathrm{W}=\mathrm{F} \times \mathrm{D}$: Put in formula sheet

Work must always be measured in Newton-Meters, therefore distance
must always be converted to meters. One Newton-meter is equal to one joule (J)
Example: You exert 320 N of force on a brick that moves
How much work has been done?

The Hydraulics in this Caddy uses 4000 N of force on hydraulic pistons with an area of $0.5 \mathrm{~m}^{2}$ Calculate pressure

$$
P=\frac{F(N)}{A\left(m^{2}\right)}
$$

Subsystems

3 Classes of Lever

3 Factors that influence the development of new technology

Evaluating Mechanical Devices

Efficiency

How well a machine uses energy (higher efficiency = less waste
Effectiveness
Does the mechanical device do what it was designed to?
Environmentally Friendly
Does the machine contribute to light, air, noise, or physical pollution? Design
What is the physical form (shape) of the device that makes it useful?
Function
What is the machine supposed to do, what tasks does it perform?

Unit D Calculation Review
You put 10 newtons of force on the handle of a can crusher.
The crusher outputs 40 N of pressure on the can. What is the
mechanical advantage?

$$
\frac{\text { Fainout }}{\text { Fingat }}=\frac{40 \mathrm{~N}}{10 \mathrm{~N}}=4
$$

2. The can crusher requires an input distance of 4 m to move
3. The can crusher requires an input distance of 4 m to move
0.5 m . Find the Speed Ratio
$S R=\frac{\text { dingut }}{d \text { aidput }}=\frac{4 \mathrm{~m}}{0.5 \mathrm{~m}}=8$
4. Calculate the efficiency of the can crusher
$E_{f f}=\frac{M A}{S_{R}} \times 100=\frac{4}{8} \times 100=50 \%$
5. 80 N of force is required to move the can crusher
neters Calculate the Work done on the crusher.
$\omega=F \times d=80 \mathrm{~N} \times 4 \mathrm{~m}=320 \mathrm{Nom}$
6. A force of 350 N is applied to the input piston of $\begin{aligned} & 320 \mathrm{~J}\end{aligned}$
7. A force of 350 N is applied to the input piston
this a ram. The piston has an area of $.15 \mathrm{~m}^{2}$. How
much pressure created?
$P=\frac{F}{A}=\frac{350 \mathrm{~N}}{0.15 \mathrm{~m}^{2}}=2333 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}=2333 \mathrm{pa}$
8. A thin pipe full of water connects two pistons. The first
piston has a surface area of $20 \mathrm{~cm}^{2}$. The second piston has a
surface area of $15 \mathrm{~cm}^{2}$. A force of 300 N is applied to the first
piston. What is the force of the output piston?
$\frac{F_{\text {input }}}{A_{\text {input }}}=\frac{F_{\text {output }}}{A_{\text {output }}}$
$\div \int \frac{300 \mathrm{~N}}{20 \mathrm{~cm}^{2}} \mathrm{x} \times \frac{?}{15 \mathrm{~cm}^{2}}=225 \mathrm{~N}$
