\qquad
\qquad

CTT Multiplying a Whole Number by H 6 a Fraction

GOAL

Use repeated addition to multiply fractions by whole numbers.

1. a) Write $4 \times \frac{3}{5}$ as a repeated addition sentence.

2. Multiply. Write your answer as a fraction and as a mixed number.
a) $7 \times \frac{2}{5}=$ \qquad
\qquad
b) $4 \times \frac{3}{8}=$ \qquad
\qquad
3. How much farther are 3 jumps of $\frac{2}{5}$ on a number line than 2 jumps of $\frac{3}{5}$? Explain.
4. Math class is $\frac{4}{6} h$ for three days of each school week. How many hours of math class does a student have in one week?
\qquad $\times \quad=$ \qquad

At-Home Help
To multiply a whole number by a fraction, you can:

Multiply using grids and counters.
$3 \times \frac{4}{5}$ means the same as 3 sets of $\frac{4}{5}$.

Each square represents $\frac{1}{5}$, so the 12 squares covered with counters represent $\frac{12}{5}$.

Multiply using a number line.
Calculate $3 \times \frac{4}{5}$ using a number line. Write the product both as an improper fraction and as a whole or mixed number.

$3 \times \frac{4}{5}=3 \times 4$ fifths
$=12$ fifths
$=\frac{12}{5}$ or $2 \frac{2}{5}$
\qquad
Exploring Calculating a Fraction of a Fraction

COAL

Represent one fraction as part of another fraction.

1. Draw a picture to show $\frac{1}{3}$ of $\frac{1}{4}$.
2. Determine the missing fraction. Use the fraction strip tower to help you.
a) $\frac{1}{3}$ of $\frac{1}{2}$ is \square
b) $\frac{3}{4}$ of $\frac{1}{2}$ is \square

At-Home Help

This fraction strip tower shows the relationship between fractions as parts of a whole.

d) $\frac{2}{3}$ of $\frac{1}{4}$ is \square
\qquad
\qquad 6

Multiplying Fractions

COAL

Multiply two fractions less than 1.

1. Draw a model to determine the product of $\frac{4}{5} \times \frac{1}{2}$.
2. Match each expression with its product in the box to the right.
a) $\frac{3}{4} \times \frac{2}{5}$
i) $\frac{2}{5}$
b) $\frac{3}{5} \times \frac{2}{3}$
ii) $\frac{1}{15}$
c) $\frac{1}{6} \times \frac{2}{5}$
d) $\frac{3}{8} \times \frac{4}{9}$
iv) $\frac{1}{6}$
3. a) Shade the grid to show why $\frac{2}{3} \times \frac{5}{8}=\frac{10}{24}$.

At-Home Help

To multiply $\frac{2}{3} \times \frac{3}{5}$, you can:

Use a fraction strip model.

Model $\frac{3}{5}$ and divide each fifth into thirds.

Then, to show $\frac{2}{3}$ of each section, colour 2 of the thirds.

$\frac{2}{3} \times \frac{3}{5}=\frac{6}{15}$
Use a grid model.
Calculate the area of a rectangle $\frac{2}{5}$ of a unit wide and $\frac{2}{3}$ of a unit long.

The coloured rectangle has
$2 \times 3=6$ squares, so its area is $\frac{6}{15}$ square units.
$\frac{2}{3} \times \frac{3}{5}=\frac{6}{15}$

Multiply.

You çan multiply the numerators and the denominators. For example,
$\frac{2}{3} \times \frac{3}{5}=\frac{2}{3} \times \frac{3}{5}$ or $\frac{6}{15}$

CTH Exploring Estimating Fraction Products

Solve the following fraction multiplication questions

At-Home |Help

a) $\frac{5}{3} \times \frac{4}{5}$
b) $\frac{6}{7} \times \frac{9}{10}$
c) $\frac{2}{3} \times \frac{4}{5}$
d) $\frac{4}{9} \times \frac{7}{13}$
a) $\frac{1}{9} \times \frac{1}{2}$
b) $\frac{1}{1000} \times \frac{1}{100}$
c) $\frac{10}{20} \times \frac{7}{14}$
d) $\frac{5}{7} \times \frac{8}{9}$
a) $\frac{5}{11} \times \frac{7}{15}$
b) $\frac{8}{9} \times \frac{7}{8}$
c) $\frac{4}{9} \times \frac{3}{7}$
d) $\frac{2}{3} \times \frac{3}{6}$
\qquad
\qquad

CH \int Multiplying Fractions Greater than 1

GOAL

Multiply mixed numbers and improper fractions.

Solve

1.

a) $1 \frac{1}{3} \times 1 \frac{2}{3}$
b) $3 \frac{1}{5} \times 6 \frac{3}{8}$
2. Multiply the following
a) $1 \frac{1}{2} \times 1 \frac{1}{3}=$ \qquad
b) $3 \frac{1}{5} \times 2 \frac{1}{4}=$ \qquad
3. Multiply using improper fractions.
a) $2 \frac{1}{5} \times 3 \frac{1}{6}=$ \qquad x \qquad or \qquad
b) $2 \frac{1}{4} \times 3 \frac{1}{3}=$ \qquad x \qquad or \qquad

At-Home $\mathbf{H e} / \mathbf{D}$

To multiply mixed fractions, you can:

Use an area model.
For example, to calculate the area of a rectangle $1 \frac{1}{3}$ units long and $2 \frac{1}{2}$ units wide:

$1 \frac{1}{3} \times 2 \frac{1}{2}=\frac{20}{6}$ or $\frac{4}{3} \times \frac{5}{2}=\frac{20}{6}$
There are 6 squares in a whole, so each square is $\frac{1}{6}$. There are 20 squares in the coloured rectangle.
Another way to record this is
$1+1+\frac{8}{6}=2 \frac{8}{6}$, or $3 \frac{2}{6}$, or $3 \frac{1}{3}$
There are two wholes and 8 other squares in the coloured rectangle.

Multiply improper fractions.

Write each mixed number as an improper fraction and multiply as you would with proper fractions.
$1 \frac{1}{3} \times 2 \frac{1}{2}=\frac{4}{3} \times \frac{5}{2}$
$=\frac{4 \times 5}{3 \times 2}$
$=\frac{20}{6}$
\qquad
\qquad

CH $6^{\text {Dividing Fractions by }}$
 O Whole Numbers

COAL

Solve these division questions

1. ${ }_{9}^{6} \div 4=$
2. a) $\frac{2}{3} \div 5$
3. Divide.
a) $\frac{5}{3} \div 10=$ \qquad
b) $\frac{2}{7} \div 4=$ \qquad
$=$ \qquad $=$ \qquad
4. $\frac{4}{5}$ of a room has to be painted. 3 painters are going to share the job. What fraction of the room will each painter complete if they all paint at the same rate?

At-Home He / D

To divide a fraction by a whole number, you can:

Think of it as sharing.
For example, $\frac{2}{5} \div 3$ tells you the share size if 3 people share $\frac{2}{5}$ of something.
You cannot share $\frac{2}{5}$ equally among three people, so write an equivalent fraction.
$\frac{2}{5}=\frac{6}{15}$

$\frac{3}{15}$ are in each group, so $\frac{2}{5} \div 3=\frac{2}{15}$.
Multiply by a fraction.
For example, $\frac{2}{5} \div 3$ is the same as $\frac{1}{3}$ of $\frac{2}{5}$, or $\frac{1}{3} \times \frac{2}{5}=\frac{2}{15}$.

Divide using an equivalent fraction, where the numerator is a multiple of the whole number.
For example, ${ }_{5}^{2} \div 3=\frac{6}{15} \div 3$

$$
=\frac{2}{15}
$$

\qquad
\qquad

CH 6 Estimating Fraction Quotients

GOAL

Solve these division questions

1. Estimate the quotient as a whole number.
a) $\frac{5}{10} \div \frac{3}{8}$
b) $\frac{3}{7} \div \frac{5}{9}$
2. Solve
a) $\frac{8}{10} \div \frac{1}{4}$
b) $\frac{8}{3} \div \frac{1}{2}$
c) $\frac{3}{2} \div \frac{3}{7}$
d) $\frac{1}{2} \div \frac{2}{3}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

At-Home He/p

To estimate a quotient of fractions less than 1 , you can:

Compare fractions by multiplying.
For example, estimate $\frac{3}{5} \div \frac{1}{8}$.

$5 \times \frac{1}{8}=\frac{5}{8}$, which is close to $\frac{3}{5}$.
$\frac{3}{5} \div \frac{1}{8}$ is close to 5 .

Use fraction strips to visualize

 the quotient.For example, to see how $\frac{3}{5}$ relates to $\frac{1}{8}$, see how many times $\frac{1}{8}$ fits into $\frac{3}{5}$. It looks like it fits about 5 times.

Compare using equivalent fractions.

For example, $\frac{3}{5}=\frac{24}{40}$ and $\frac{1}{8}=\frac{5}{40}$. 24 is about 5 times greater than 5 , so $\frac{3}{5} \div \frac{1}{8}$ is close to 5 .

Name: \qquad
\qquad

CH 6 Dividing Fractions by Meastring

Acint

Divide fractions using models and using equivalent fractions with a common denominator.

1. Calculate using common denominators.
a) $\frac{1}{4} \div \frac{7}{8}=\frac{\square}{\square} \div \frac{7}{8}$
b) $\frac{3}{4} \div 2 \frac{1}{2}=\frac{3}{4} \div \square$
$=$ \qquad
$=$ \qquad
2. Calculate each quotient using equivalent fractions.
a) $1 \frac{1}{2} \div \frac{2}{3}=\square$

$=$ \qquad
b) $\frac{2}{3} \div 1 \frac{1}{2}=\frac{\square}{\square} \div \square$

$=$
\qquad
3. Sally has $3 \frac{1}{2} \mathrm{~L}$ of apple juice in the fridge. Each glass holds $\frac{1}{3} \mathrm{~L}$.
a) Set up a division statement to calculate how many glasses of apple juice Sally can pour.

At-Home Help

To divide two fractions, you can:
Determine the number of times the divisor fits into the dividend using fraction strips and a common denominator.

For example, to calculate $\frac{2}{3} \div \frac{4}{9}$:

Compare using equivalent fractions.

$\frac{2}{3} \div \frac{4}{9}=\frac{6}{9} \div \frac{4}{9}$
$=6 \div 4$
$=1 \frac{2}{4}$ or $1 \frac{1}{2}$
b) Solve your statement. How many glasses of apple juice can Sally pour?
\qquad $=$ \qquad
\qquad
\square
\qquad
$=$
\qquad
4. Does order matter when you divide fractions? Explain.
\qquad

C- Dividing Fractions Using a Related Multiplication

celt

Divide fractions using a related multiplication.

1. Calculate.
a) $\frac{2}{3} \div \frac{3}{4}=\square \quad \times \quad$ or
b) $\frac{4}{5} \div \frac{3}{5}=$ \qquad $\times \quad$ or \qquad
c) $\frac{5}{6} \div \frac{1}{3}=$ \qquad $\times \quad$ or \qquad
d) $\frac{7}{16} \div \frac{6}{20}=$ \qquad $\times \quad$ or or \qquad
2. Write $=,<$, or $>$ in each box. Calculate the quotients that are greater than 2.

At-Home |Helly

To divide two fractions, you can:
Multiply by the reciprocal.
The reciprocal is the fraction that results from switching the numerator and denominator. For example, $\frac{4}{5}$ is the reciprocal of $\frac{5}{4}$. Calculate using the reciprocal.
$\frac{2}{3} \div \frac{4}{9}=\frac{2}{3} \times \frac{9}{4}$
$=\frac{18}{12}$
$=1 \frac{6}{12}$ or $1 \frac{1}{2}$
a) $\frac{6}{10} \div \frac{1}{4} \square 2 ; \quad \frac{6}{10} \div \frac{1}{4}=$ \qquad
b) $\frac{1}{3} \div \frac{2}{1} \square 2$; $\frac{1}{3} \div \frac{2}{1}=$ \qquad
c) $\frac{7}{8} \div \frac{2}{5} \square 2 ; \quad \frac{7}{8} \div \frac{2}{5}=$ \qquad
d) $\left.\frac{2}{3} \div \frac{1}{2} \square\right] 2 ; \quad \frac{2}{3} \div \frac{1}{2}=$
3. Why does it make sense that $\frac{6}{7} \div \frac{2}{3}$ is greater than $\frac{6}{7}$?
4. Jack delivers newspapers as his part-time job. It takes $5 \frac{1}{2}$ min to deliver one newspaper.
a) How many newspapers can Jack deliver in 20 min? \qquad $\div 5 \frac{1}{2}=$ \qquad
b) How many newspapers can Jack deliver in 45 min ? \qquad $\div 5 \frac{1}{2}=$ \qquad
c) How many newspapers can Jack deliver in $1 \frac{1}{2} \mathrm{~h}$? \qquad $5 \frac{1}{2}=$ \qquad
\qquad

CH $6^{\text {order of operations }}$

coal

Use the order of operations in calculations involving fractions.

1. Calculate using the rules for order of operations.
a) $\left(\frac{1}{2}+\frac{1}{3}\right) \times \frac{6}{7}=$
b) $\frac{3}{4} \div\left(\frac{1}{2}+\frac{1}{4}\right)=$
c) $\frac{4}{6} \div\left(\frac{5}{7} \div \frac{1}{2}\right)+\frac{2}{4}=$
d) $\frac{4}{6} \div\left(\frac{5}{7} \times \frac{1}{2}+\frac{2}{4}\right)=$
e) $\left(\frac{5}{10}-\frac{1}{3} \times \frac{2}{8}+\frac{1}{5}\right) \div \frac{1}{6}=$
2. Place brackets to make this equation true.
$3 \times \frac{2}{3}+\frac{1}{3} \div \frac{1}{4}=12$
